24801
Sensory over-Responsivity and Social Cognition in ASD: Effects of Aversive Sensory Stimuli and Attentional Modulation on Neural Responses to Social Cues
Objectives: To examine the effect of a tactile sensory distracter on brain responses during a social cognition task, and to test whether explicitly directing attention to relevant social cues can mitigate the effect of the sensory distracter.
Methods: Participants were 15 children and adolescents with ASD and 16 TD matched controls, between 8-17 years of age. While undergoing fMRI, children completed a social cognition task, which involved determining whether a speaker was sarcastic or sincere. They completed the task with/without a tactile sensory distracter, and with/without instructions directing their attention to relevant social cues. Parents completed the tactile scales of the Short Sensory Profile (Dunn, 1999) and SenSOR Inventory (Schoen et al., 2008); scores were combined into a tactile SOR composite.
Results: When completing the task in the presence of the sensory distracter, TD youth showed increased activity in auditory language and frontal regions whereas ASD youth showed decreased activation in these areas. Instructions mitigated this effect such that ASD youth no longer showed decreased activation during tactile stimulation; instead, the ASD group showed increased medial prefrontal (mPFC) activity. With attentional instructions, higher SOR was associated with greater activity in primary auditory and visual cortex as well as higher-level language and face processing regions, whereas lower SOR was associated with greater activity in temporal pole and mPFC, regions associated with integrative social cognition such as inference and theory of mind.
Conclusions: Results demonstrate for the first time a neural mechanism through which sensory stimuli may disrupt social cognition, and that attentional modulation can restore neural processing of social cues through prefrontal regulation. Attentional modulation may work through different mechanisms depending on level of SOR: youth with high SOR may rely on processing individual visual and auditory stimuli whereas youth with low SOR may be better able to integrate and interpret multiple social cues. Findings have implications for novel, integrative interventions that incorporate attentional directives to target both sensory and social symptoms.