Mouse Models of Autism to Test Hypotheses and Develop Treatments

Jacqueline N. Crawley, Ph.D.

Chief, Laboratory of Behavioral Neuroscience Intramural Research Program, National Institute of Mental Health NIH, Bethesda, MD

Causes of Autism(s) are unknown: Strongest evidence is genetic

- 4:1 frequency ratio of boys:girls
- Concordance is 60-92% for monozygotic twins
- Concordance is 0-10% in dizygotic twins, 5-10% in siblings; population frequency is ~ 0.6%
- Linkage analyses indicate many genes underlying this complex disease, including linkages at chromosomal loci 15q11-q13, 16p11.2, 22q13, X-linked
- Copy number variants; epigenetic factors
- Multiple putative candidate genes include GABA-β3, 5-HTT, MET, PTEN, En2, UBE3a, CNTNAP2, neurexins, neuroligins, shanks, and genes for comorbid neurodevelopmental disorders including FMR1, MECP2, TSC

Mouse Models with Mutations in Candidate Genes

Adapted from Abrahams and Geschwind, Nature Reviews Genetics 2008

Human Gene	Co-morbid Syndrome	Mutant Mouse
AVPR1a		Yes
CACNA1C	Timothy	Yes
CADPS2		No
CNTNAP2		Yes
DHCR7	Smith-Lemli-Opitz	Yes
EN2		Yes
FMR1	Fragile X	Yes
GABARβ2		Yes
ITBG3		Yes
MECP2	Rett	Yes
MET	(tumors)	Yes
NRXN1		Yes
NLGN3		Yes
NLGN4		Yes
OXTR		Yes
PTEN	(cancers)	Yes
RELN		Yes
SHANK3	22q13 deletion Phelan-McDermid	Yes
SLC6A4		Yes
TSC1, TSc2	Tuberous sclerosis	Yes
UBE3A	Angelman	Yes

Why are Mouse Models Useful?

- Mice and humans share 99% of their genes (Thomas Bourgeron, neuroligin4 and shank3 mice, IMFAR 2008)
- Similar brain anatomy
- Similar biochemistry, neurotransmitters, receptors (Mark Bear, mGluR5 receptor upregulated in Fragile X mice, IMFAR 2009)
- Similar physiology, brain electrophysiology
- Analogous behavioral endophenotypes Mice are a social species
- Mouse models of neuropsychiatric disorders provide research tools to test hypotheses about causes
- Mouse models of neuropsychiatric disorders provide translational tools to develop treatments

Don't anthropomorphize! There will never be an "autistic mouse."

- Rather, we are generating mouse behavioral assays with analogies to the symptoms of autism (face validity)
- Mouse models are used to test hypotheses, e.g. genes linked to symptoms of autism, brain development, neuroanatomical abnormalities, immune dysfunctions, or environmental toxins (construct validity)
- Robust mouse models offer translational tools to evaluate treatment efficacy (predictive validity)

How would you model the behavioral symptoms of autism in mice?

Which of the human behavioral symptoms may have reasonable endophenotype analogies in mice?

Which of the human symptoms are the most essential to include in an animal model?

Autism is a neurodevelopmental disorder of unknown causes

Diagnosis currently requires evidence in three categories of defined behavioral symptoms:

DSM-IV-TR Diagnostic Symptoms of Autism

Proposed DSM-V Diagnostic Criteria for Autism

Some of the Associated Symptoms of Autism

- Seizures
- > Anxiety
- > Low IQ
- Sleep disruption
- Hyperreactivity and hyporeactivity
 - to sensory stimuli

No biological markers Tentative biological correlates:

- Abnormalities in white matter connectivity
- Macroencephaly during early development
- > Platelet hyperserotonemia
- > Fewer Purkinje cells in the cerebellum
- Reduced activation of the fusiform gyrus and amygdala while engaged in social tasks during fMRI imaging
- Co-morbid with symptoms of other neurodevelopmental disorders

LBN STRATEGY

for testing genetic hypotheses about the causes of autism

Mouse Models of Autism BEHAVIORAL PHENOTYPING TEAM 2007-2008

Jacqueline Crawley, Chief, Laboratory of Behavioral Neuroscience National Institute of Mental Health, IRP, NIH Bethesda, Maryland, USA

Postdoctoral fellows and visiting scientists 2006-2010

Florence Roullet Jill Silverman Mu Yang Kathryn Chadman Hewlet McFarlane Bryce Ryan Maria Luisa Scattoni Markus Wöhr

Animal Models of Autism Core Symptom #1:

Impaired social interaction

Some social behaviors of Mus musculus

nose-to-nose sniff

anogenital exploration

fighting

dominance

motivation

social memory

parenting

mating

Nesting pattern of wild type(+/+) Dol 1 mutant mice

nesting

Modeling the Aloof, Passive Subtype

Leo Kanner, Johns Hopkins University Autistic disturbances of affective contact <u>Nervous Child</u> 2:217-250, 1943

"The children of our group have all shown their extreme aloneness from the very beginning of life, not responding to anything that comes to them from the outside world."

Illustration from Hutt and Hutt, www.autismuk.com, 1970

Automated Social Approach Apparatus

Designed and fabricated by Jacqueline Crawley, NIMH, Sheryl Moy, UNC, George Dold and coworkers, NIMH/NINDS Research Services Branch, Bethesda, MD

Sociability in Adult C57BL/6J (B6) Mice

Video by Mu Yang and Adam Katz, LBN, NIMH 2009

Significant Sociability Scores in Three Inbred Strains of Mice

Moy et al., Genes, Brain and Behavior, 2004

Nadler et al., Genes, Brain and Behavior 2004

Similar Sociability Scores in Male and Female C57BL/6J

Similar sociability scores when the subject mouse is the same or different strain as the novel mouse

Yang and Crawley, NIMH 2007

Similar sociability scores in repeated testing of the same individuals as juveniles adults and as adults

Moy et al., 2004

Mouse Social Approach Task Social sniffing correlates with time in chamber

Mu Yang, LBN, NIMH, 2009

B6 adult male mice display similar interest in exploring a novel mouse and a novel social odor on an inanimate Nestlet square

Ryan et al., Behavioural Brain Research 2008

B6 adult male mice more time exploring a novel social odor on an inanimate Nestlet square than exploring a novel mouse enclosed in a Plexiglas cylinder

Ryan et al., Behavioural Brain Research 2008

1. NEVEROE OF NUT THES TESTED OF AUGH SOCIAL Approach EDIT 2004-2010							
Mutation	Collaborator/Source	Phenotype	Publication				
Oxytocin (line1)	Scott Young, NIMH	Normal sociability	Crawley et al. 2007				
Oxytocin (line2)	Larry Young, Emory	Normal sociability	Crawley et al., 2007				
Vasopressin Avpr1b	Scott Young, NIMH	Normal sociability	Yang et al., 2007				
VIP	Jim Waschek, UCLA	Absence of sociability in offspring of VIP -/- dams	Stack et al., 2008				
BDNF-tg	JAX (Huang, Tonegawa)	Normal sociability	Silverman et al., in prep				
Serotonin transporter	Dennis Murphy, NIMH	Reduced sociability Reduced pref soc novelty	Moy et al., 2009				
Neuroligin-2 Neuroligin-3 Neuroligin-4	Nils Brose, Max Planck Nat Heintz, Rockefeller Nils Brose, Max Planck	In progress Normal sociability In progress	Chadman et al., 2008				
Shank1 Shank 3	Morgan Sheng, MIT J Buxbaum, Mt Sinai	Normal sociability Fewer pup vocalizations In progress	Silverman et al., in prep Wöhr, in preparation				
Disc1	M Pletnikov, JHopkinsU	Normal sociability Reduced pref soc novelty					
Fmr1	Bill Greenough, U Illinois	Reduced sociability on FVB background Normal sociability on B6	Moy et al., 2009				
Engrailed-2	Karl Herrup, Case U Manny DiCicco-Bloom, NJ	Inactivity confound In progress	Moy et al., 2009 Silverman, in progress				
Smith Lemli Opitz	Kathy Sulik, UNC Denny Porter, NICHD	Inactivity confound Inactivity confound	Moy et al., 2009				

1. REVERSE GENETICS: Mutant lines tested on adult social approach LBN 2004-2010

Jamain et al., 2008 Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism

Neuroligin-4 knockout mice

- A) Less reciprocal social interactions in NL-4 than WT, between pairs of male mice of the same genotype
- B) Absence of sociability in NL-4 in the 3chambered social approach task

Nakatani et al., 2009 Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism

Tsuyoshi Miyakawa, Toru Takumi

2. Forward Genetics

Hypothesis: Behavioral traits of autism are at the extremes of natural variation in the population distribution, caused by rare polymorphisms in multiple genes

2. Forward Genetics: UNC STAART project focused on inbred strains from the International Mouse Phenome Project

- A) Behavioral traits
- B) DNA microarray expression
- C) Cluster analysis, gene ontology

C57-related C57BL/6J C57L/J C58/J	Swiss FVB/NJ SJL/J NOD/LtJ SWR/J	Castle's 129S1/Svlmg A/J BALB/cByJ C3H/HeJ DBA/2J AKR/J NZB/B2NJ	Wild-derived PERA/Ei MOLF/Ei CAST/Ei SPRET/Ei	
		SM/J	Other	
		BTBR T+tf/tf	PL/J	

University of North Carolina STAART Project 4 Sociability in first 10 inbred strains

Moy et al., Behavioural Brain Research, 2007

At LBN NIMH Bethesda Replication of BTBR social approach deficit During dark phase of circadian cycle

McFarlane et al., Genes, Brain and Behavior, 2007

McFarlane et al., 2007

Absence of Sociability in Adult BTBR T+tf/J (BTBR)

Video by Mu Yang and Adam Katz, LBN, NIMH 2009

BTBR is a useful inbred strain

To design tasks relevant to the diagnostic symptoms of autism

To develop treatment protocols

Genetically homogenous, commercially available from JAX, easy to breed
Reciprocal Social Interactions

Pairs of 21 day old juveniles Pairs of adults Same or different strains Same or different genotypes Same or different sexes From different home cages

10 – 30 minute test session

Events scored include social approach, social grooming, following, crawling over/under, etc.

Control measures of non-social grooming, exploration, and activity are simultaneously scored.

Noldus Observer Phenotyper with digital videocamera, keypad event recorder, and frame-by-frame data analysis software

McFarlane and Crawley, NIMH 2006

Social Grooming

One mouse grooms the other

McFarlane et al., 2007

Nose-to-Nose Sniffing One mouse sniffs the snout region of the other

McFarlane et al., 2007

Crawl under or over One mouse pushes under or walks across the other

McFarlane et al., 2007

Corroboration across three laboratories

Reciprocal social interaction deficits in adult BTBR T+tf/J pairs versus B6 pairs, tested in an empty cage

Valerie Bolivar, Wadsworth Institute, University of Albany, NY

Neurodevelopmental Milestones Postnatal days 2-14

Body weight Body length Eye opening Incisor eruption Pinna detachment Forelimb placing Bar holding Homing test Cliff aversion Negative geotaxis Righting reflex Screen climbing Auditory startle Separation vocalizations

Scattoni et al, 2008

Control Measures

For physical health and procedural abilities

- General Health (body weight, appearance of fur, home cage behaviors nesting patterns)
- Neurological reflexes (startle, righting)
- Sensory abilities (hearing, vision, olfaction)
- Motor abilities (locomotion, coordination and balance, muscle strength)

Crawley, 2009

General Health, Neurological Reflexes, Sensory Abilities, Motor Functions

Mu Yang, LBN, NIMH, 2009

General Health and Neurological Reflexes Shank1

Genotypes	+/+	+/-	_/_	р
Body temperature	36.7±.28	36.3±.45	37.7 ± .27	.03 *
Body weight	25.1±1.5	23.0±1.7	25.1±1.6	.57
Fur condition (3 pt scale)	2	2	2	NA
Bald patches (%)	6%	8%	0%	.63
Missing whiskers (%)	20%	16%	9%	.74
Piloerection	0%	0%	0%	NA
Body tone (3 pt scale)	100%	100%	100%	NA
Limb tone (3 pt scale)	100%	100%	100%	NA
Wild running (%)	0%	0%	0%	NA
Sterotypies (%)	0%	0%	0%	NA
Exploration (3 pt scale)	2	1.9	1.9	.64
Trunk curl (%)	86%	83%	63%	.32
Wire hang (latency sec)	55.9±2.8	60.0	44.2±8.0	.05 *
Righting reflex (%)	100%	100%	100%	NA
Corneal reflex(%)	90%	100%	93%	.59
Auditory startle (%)	100%	100%	100%	NA
Dowel biting (3 pt scale)	.26	41	.36	.70

Silverman, Turner, Barkan, Tolu, Hung, Sheng Crawley, SFN 2009

Open Field Exploratory Locomotion Shank1

Silverman et al., SFN 2009; Replicates Hung et al., 2008

Rotarod Motor Coordination and Balance Shank1

Silverman, Diagne, Turner, Barkan, Tolu, Hung, Sheng Crawley, SFN 2009; Replicates Hung et al., 2008

Shank1 Anxiety-related behaviors

Light ↔ Dark Transitions

Elevated Plus-Maze

Silverman, et al., SFN 2009; Replicates Hung et al., 2008

Auditory and Sensorimotor Gating Acoustic Startle and Prepulse Inhibiton Shank1

Acoustic Startle

Prepulse Inhibition of Acoustic Startle

Silverman, Turner, Barkan, Tolu, Hung, Sheng Crawley, SFN 2009

Silverman, Turner, Barkan, Tolu, Hung, Sheng Crawley, SFN 2009

	C57BL/6J	C57L/J	DBA/2J	FVB/NJ	C3H/HeJ	AKR/J	A/J	BALB/eByJ	BTBR	12981
Physical Characteristic	s									
Body weight (g)	20.1 0.5	1.5 0.3	18.8 0.1	19.5 0.3	19.810.3	19.9 0.5	18.110.5	20.9 0.3	2010.8	19.5 0.3
Poor coal condition	0%	0%	0%	0%	.0%	0%	0%	0%	8%	0%
Piloerection	0%	0%	6%	35%	5%	0%	0%	15%	4%	0%
Vocalization during										
handling or reflex test	15%8	26%	67%	0%i	0%6	90%	0%8	30%	1%6	10%
Home case (% cases)										
Nest building	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Huddline	100%	100%	100%	80%	100%	100%	100%	100%	100%	80%
Abenaul responses	0%	0%	0%6	0%	0%	0%	0%6	0%	0%	0%
Reflexes (% of mice n	ormali									
Corneal	85%	100%	78%	100%	100%6	100%6	100%	90%	80%	100%
Visual placine	100%	100%	100%	100%	100%	80%	80%	100%	100%	100%
Viluissae orienting	100%8	100%	83%	100%	100%	100%	100%	9.5%	100%	100%
Preyor rollox	90%	90%	100%	100%	100%	100%	90%	80%	92%	100%
Olfaction test Uncovered buried for	od									
(% mine)	85%*	100%*	100%*	100%	50%	80%*	70%	100%*	8306*	
800.0#		1 10 10 1		a wie en				1.1616.11		
Latence to find (eas)	282-67	167-37	158-34	198-46	636472	409-70	473+91	84-15	376480	117-77
Datency to mit (Sec)	202-07	1052	1.0-04	150-40	0024.2	403=70	455401	04-1.4	212405	55-475
Motor coordination										
Rotarod latency (sec) Inverting on rotarod	118±16	98=11	127=7	129=16	51±9	195=19	102 1 9	117=10	69±15	177=19

Table 1. Physical characteristics, vocalizations, home cage behavior, sensory reflexes, offactory ability, and a motor test. Data shown are means - SEM for weight and latency measures, percent of cages for home cage measures, and percent of mice for other measures.

Moy et al., Behavioural Brain Research, 2007

Animal Models of Autism Core Symptom #3:

Stereotypies, repetitive behaviors, resistance to change in habit, restricted interests

REPETITIVE SELF-GROOMING IN BTBR T+tf/J

Yang, McFarlane and Crawley, NIMH, 2007

Resistance to change in habit, perseveration: Reversal of a position habit

T-maze

Morris water maze

Crawley, 2008

Morris Water Task Hidden Platform

Andrew Holmes, NIMH, 2001

Morris Water Maze Reversal

Andrew Holmes, NIMH, 2001

Restricted Interests

Novel Object Exploration

Photograph from Down Syndrome.org, Buckley and Sacks, 2007

Accuscan Holeboard

Photograph by Jacqueline Crawley, LBN, NIMH, and Janet Stephens, NIH Macrophotography, 2007

Touch Screen

Photograph from Andrew Holmes, NIAAA, 2006

Crawley, 2010

Animal Models of Autism Core Symptom #2:

Communication

Olfactory and auditory signals and responses:

Interactive and intentional

Olfactory Habituation/Dishabituation

Mu Yang and Adam Katz, LBN, NIMH, 2010

Crawley, 2007

Olfactory Habituation/Dishabituation

Non-social odors Galanin overexpressing transgenic mice Wrenn et al., 2003

Social odors *CyIn2* Williams model mice Cuasay, Cohen, Hill, Crawley 2005

BTBR Olfactory Habituation/Dishabituation

Yang, Clarke, Katz, Crawley NIMH 2010

Shank3 Olfactory Habituation/Dishabituation

Saxena and Crawley, NIMH, Buxbaum Mt. Sinai, 2010

Olfactory Scent Marking and Countermarking

Florence Roullet, LBN, 2009

Ninhydrin spray + pen outline

Photograph under ultraviolet lamp

Picassa + NIH Image software

Florence Roullet, NIMH, 2009

Scent marking in a clean open field

Florence Roullet, NIMH, 2009

Ultrasonic Vocalizations Avisoft Recording and Analysis System

Separated Pups

Adult Social Settings

Photographs by Maria Luisa Scattoni and Mu Yang, LBN, NIMH, and Janet Stephens, NIH Macrophotography, 2007

Ultrasonic vocalizations during scent marking to B6 female urine

Markus Wöhr, Florence Roullet, and Crawley, Genes Brain and Behavior, in press

Jamain et al., 2008 Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism

Neuroligin-4 knockout mice

Fewer ultrasonic vocalizations by NL-4 than WT male mouse interacting with estrus female mouse

Sylvie Granon and Thomas Bourgeron

Crawley 2010

One mouse sniffs the urine of another mouse Ultrasonic vocalizations recorded with Avisoft system

Maria Luisa Scattoni and Jacqueline Crawley, LBN, NIMH, 2007

Ultrasonic Distress Calls from Separated Mouse Pups

Photograph by Maria Luisa Scattoni, LBN, NIMH, and Janet Stephens, NIH Macrophotography, 2007
C57BL6/J and BTBR T+tf/J separated pup ultrasonic vocalizations

B6

Scattoni, NIMH 2007

10 Categories of Pup Separation Vocalizations

Scattoni, Gandhy, Ricceri, and Crawley, PLoS One, 2008

Pup Call Distributions: 4 Inbred Strains

Scattoni et al., PLoS One, 2008

Mouse Ultrasonic Vocalizations

Is it communication? Play back recordings, score responses

Playback of calls through an ultrasonic speaker at the end of one arm of a radial maze

Markus Wöhr, 2009 Photo by Mu Yang

Mouse Ultrasonic Vocalizations

Are calls quantitative and replicable enough to use as an assay? Record calls in various social situations

Multiple social settings? Male-Male Resident Intruder

Maria Luisa Scattoni, Mu Yang and Adam Katz, LBN, NIMH, 2010

Autism-Relevant Behavioral Phenotypes of the BTBR T+tf/J Inbred Strain

- Juveniles display low reciprocal social interaction
- Adults fail to display sociability in the 3-chambered automated social approach task and display low reciprocal social interactions
- Pups and adults emit unusual patterns and numbers of ultrasonic vocalizations, low olfactory scent marking
- Adults and juveniles display high repetitive self-grooming
- No artifactual confounds, normal on measures of general health, sensory abilities, motor functions, anxiety-related behaviors

Investigating Biological Mechanisms

Background Genes QTL - Sherr SNPs - Bolivar

Neuroanatomy Structural imagin DTI pathway Synaptic markers Dendrites, spine

Treatments Pharmacological and Behavioral Interventions

Neurochemistry Neurotransmitters Receptors Transporters Signaling proteins

Douglas Wahlsten, Pamela Metten, John Crabbe

Survey of 21 inbred mouse strains in two laboratories reveals that BTBR T/1 tf/tf has severely reduced hippocampal commissure and absent corpus callosum

Brain Research 971 (2003) 47–54

Morphometric imaging of BTBR versus B6 to investigate abnormalities in neuroanatomical structures and white matter connectivity

J. Michael Tyszka and Ralph Adolphs, Caltech, 2009

Corpus callosum lesions at postnatal day 7 do not impair adult social behaviors in C57BL/6J mice:

Not corpus callosum per se, but other white matter connectivity abnormalities in BTBR?

Yang, et al., Eur J Neurosci 2009

Behavioral Interventions and Drug Treatments

Sarah Turner

Roheeni Saxena

LBN, NIMH, April 2010

Translational Applications of Autism-Relevant Phenotypes for Treatment Discovery

Behavioral Interventions:

Currently the most effective treatment for symptoms of autism

Social deficits in BTBR T+tf/J were unchanged by cross-fostering with B6 mothers

Yang et al., Int J Dev Neurosci, 2007

Excessive grooming in BTBR T+tf/J was unchanged by cross-fostering with B6 mothers

Yang et al., Int J Dev Neurosci, 2007

Housing BTBR with B6 as Juveniles Rescued Adult Sociability

Yang, Perry, Weber and Crawley, 2009

Translational Applications of Autism-Relevant Phenotypes for Treatment Discovery

Pharmacological Interventions:

Not too late to change synapses?

Synaptic Gene Mutations in Autism: Dynamic Mechanisms

Dölen et al., *Neuron* 2007 Correction of Fragile X syndrome in mice

High density of dendritic spines in visual cortex of *Frmr1* knockout mice (KO), Normal spine densities in WT and *mGluR5* knockout mice (HT), Rescue by breeding KO x HT (double knockout cross, CR)

mGluR5 Treatment Strategy

From Kelleher and Bear, Cell 2008 www.seasidetherapeutics.com

Zhou et al., *J Neurosci* 2009 Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neuralspecific *Pten* knock-out mice

Rapamycin treatment reduces the larger head size and enlarged hippocampal dentate gyrus in *Pten* mutant mice

Rapamycin treatment increases reciprocal social interactions in *Pten* mutant mice

Luis Parada, University of Texas Southwestern PTEN (phosphatase and tensin homolog deleted on chromosome ten) is a major negative regulator of the phosphatidylinositol-3 kinase (PI3K)/AKT/Tsc/mTOR pathway. Rapamycin is an mTOR1 inhibitor

Translational Applications of Autism-Relevant Phenotypes for Drug Treatment Discovery: Experimental Design

- Inject 3 drug doses or vehicle i.p.,10 ml/kg volume
- N=10 per dose per strain per behavioral task
- Compare BTBR versus B6
 - Self-Grooming Assessment
 5 minute habituation
 10 minute test session
 - 2. Social Approach20 minute habituation10 minute sociability session
 - 3. Open Field Locomotion30 minutes in Accuscan automated open field

Silverman and Crawley, 2009

MPEP, is an mGluR5 antagonist, a drug class that blocks seizures and reverses dendritic abnormalities in Fragile X mice

Time in Chamber

Silverman et al., Neuropsychopharmacology 2010

MPEP is not sedative at doses than reduce repetitive self-grooming

C57BL/6J

BTBR T+tf/J

Open field locomotion (min)

Open field locomotion (min)

Silverman et al., Neuropsychopharmacology 2010

MPEP did not reverse the sociability deficit in BTBR

Silverman et al., Neuropsychopharmacology 2010

Translational Applications of Mouse Models of Autism Preclinical drug testing in progress in our laboratory:

MTEP (mGluR5 receptor antagonist)

- Risperidone (antipsychotic approved by FDA for irritability symptoms of autism)
- CX546 (AMPA receptor modulator)
- Your suggestions?

Where is the field now?

We are still in the early stages of choosing and optimizing the phenotyping assays for mouse models of autism

What we need to know:

Which neuroanatomical pathways mediate the complexities of social interactions?

Which genes are activated in brain regions during social interactions, and the contributions of each

Gene x environment interactions – multiple hits

Where is the field now?

Ongoing discussions between autism clinical researchers and basic research mouse modelers will contribute to the iterative, convergent process of designing analogous diagnostics, discovering the causes of autism, and developing effective treatments.